应用介绍
本项目利用蜘蛛爬虫抓取文章,然后对文章分类,利用余弦相似度算法计算文本相似度,进行文章推荐。
#!/usr/bin/python
# Filename: bayes_sort.py
# _*_ coding:utf-8 _*_
from numpy import *
import re
import random
import pymongo
from bson import ObjectId
import jieba
import sys
def fetchArticalTrain(db): # 获取训练文章
artical_tag = db.artical_tag.find_one({'catagore':{'$exists':True}, 'is_trained':{'$exists':False}})
if (not artical_tag):
exit(1)
artical = db.artical.find_one({'_id':ObjectId(artical_tag["a_id"])})
with open("../data_spider/html/" + artical['title_hash'] + ".html", "rb") as f:
artical_content = f.read().decode("utf-8")
artical_tag['is_trained'] = 1
db.artical_tag.save(artical_tag)
# print(artical_content)
artical_content = removeLabel(artical_content)
artical_content = jiebacut(artical_content)
artical_content = removeStopWords(artical_content)
return artical_content, artical_tag['catagore']
def fetchArticalClassify(db): # 获取待分类文章
# artical_tag = db.artical_tag.find_one({'catagore':{'$exists':False}})
artical_tag = db.artical_tag.find_one({'catagore':{'$exists':True}, 'is_trained':{'$exists':False}})
if (not artical_tag):
exit(1)
artical = db.artical.find_one({'_id':ObjectId(artical_tag["a_id"])})
with open("../data_spider/html/" + artical['title_hash'] + ".html", "rb") as f:
artical_content = f.read().decode("utf-8")
artical_tag['is_trained'] = 1 # 标记完之后就不会拿它去分类了
db.artical_tag.save(artical_tag)
# print(artical_content)
artical_content = removeLabel(artical_content)
artical_content = jiebacut(artical_content)
artical_content = removeStopWords(artical_content)
return artical_content, artical_tag['catagore']
def removeLabel(content): # 去除标签 \ 空格 \ 换行 \ tab
dr = re.compile(r'<[^>]+>',re.S)
dd = dr.sub('', content)
dd = dd.replace("\n",'').replace(' ','').replace("\t",'').replace(".","_")
# print(dd)
return dd
def jiebacut(content): # 分词
seg_list = jieba.cut(content,cut_all=False)
tmp = []
for seg in seg_list:
tmp.append(seg)
seg_list = tmp
# print("jieba cut result:", "/ ".join(seg_list))
return seg_list
def removeStopWords(word_list): # 删除停词
with open("stopwords.txt", "r") as f:
for line in f:
line = line.replace("\n", '')
while(1):
if (line in word_list):
word_list.remove(line)
# print("remove" + line)
else:
break
# print("remove stop words result:", "/ ".join(word_list))
return word_list
def trainBayes(word_list, cata_num, db):
if (not db.bayes_words.find_one({'cata_num':-1})):
db.bayes_words.insert({'cata_num':-1, 'total':0})
item = db.bayes_words.find_one({'cata_num':-1})
item['total'] += len(word_list)
db.bayes_words.save(item) # 总词数
item = db.bayes_words.find_one({'cata_num':cata_num})
if (not item):
db.bayes_words.insert({'cata_num':cata_num, 'total':0})
item = db.bayes_words.find_one({'cata_num':cata_num})
# print(item['total'])
# print(len(word_list))
item['total'] = item['total'] + len(word_list)
for word in word_list:
if (word in item):
item[word] += 1
else:
item[word] = 1
# print(item)
db.bayes_words.save(item)
def classify(word_list, db):
total_num = db.bayes_words.find_one({'cata_num':-1})['total']
cata_total = {}
for item in db.bayes_words.find({"cata_num":{"$gte":0}},{"total":1, "cata_num":1}):
cata_total[item['cata_num']] = item['total']
catagores = []
for cata in db.catagore.find():
catagores.append(cata['num'])
cata_probability = {}
for word in word_list:
# 计算这个词一共出现了多少次
word_num = 0
for cata in catagores:
item = db.bayes_words.find_one({"cata_num":cata, word:{'$exists':True}},{word:1, "cata_num":1})
if (item):
word_num += item[word]
for cata in catagores:
item = db.bayes_words.find_one({"cata_num":cata, word:{'$exists':True}},{word:1, "cata_num":1})
if (item):
if (cata in cata_probability):
cata_probability[cata] += (item[word]/cata_total[cata]) * (cata_total[cata]/total_num) / (word_num/total_num)
else:
cata_probability[cata] = (item[word]/cata_total[cata]) * (cata_total[cata]/total_num) / (word_num/total_num)
print(cata_probability)
max = cata_probability[0]
res = 0
for cata in cata_probability:
if (max < cata_probability[cata]):
max = cata_probability[cata]
res = cata
print(str(res) + "is the max catagore.")
return res
if __name__ == '__main__':
client = pymongo.MongoClient(host='127.0.0.1', port=27017)
db = client['ArticalRecommend']
if (sys.argv[1] == "train"):
word_list,cata_num = fetchArticalTrain(db)
trainBayes(word_list, cata_num, db)
elif (sys.argv[1] == "classify"):
word_list,cata_num = fetchArticalClassify(db)
res = classify(word_list, db)
if (res == cata_num):
print("1111")
else:
print("2222")
else:
print("para error. train/classify")
exit(0)
©版权声明:本文内容由互联网用户自发贡献,版权归原创作者所有,本站不拥有所有权,也不承担相关法律责任。如果您发现本站中有涉嫌抄袭的内容,欢迎发送邮件至: [email protected] 进行举报,并提供相关证据,一经查实,本站将立刻删除涉嫌侵权内容。
转载请注明出处: apollocode » 文章推荐系统
文件列表(部分)
名称 | 大小 | 修改日期 |
---|---|---|
bayes_sort.py | 1.54 KB | 2017-06-12 |
extract_tag.py | 0.89 KB | 2017-06-12 |
run_classify.sh | 0.16 KB | 2017-06-12 |
run_extract_tag.sh | 0.16 KB | 2017-06-12 |
run_train.sh | 0.16 KB | 2017-06-12 |
similarity_pair_push.py | 0.52 KB | 2017-06-12 |
similarity_queue_process.py | 1.45 KB | 2017-06-12 |
stopwords.txt | 8.51 KB | 2017-06-12 |
__init__.py | 0.00 KB | 2017-06-12 |
mongo_rsa.conf | 0.17 KB | 2017-06-12 |
mongo_rsb.conf | 0.17 KB | 2017-06-12 |
mongo_rsc.conf | 0.17 KB | 2017-06-12 |
setting.js | 0.13 KB | 2017-06-12 |
common.py | 0.14 KB | 2017-06-12 |
items.py | 0.28 KB | 2017-06-12 |
middlewares.py | 1.37 KB | 2017-06-12 |
pipelines.py | 0.61 KB | 2017-06-12 |
ImageUrl_Process.py | 0.56 KB | 2017-06-12 |
__init__.py | 0.00 KB | 2017-06-12 |
settings.py | 1.40 KB | 2017-06-12 |
toutiao.py | 1.62 KB | 2017-06-12 |
__init__.py | 0.13 KB | 2017-06-12 |
toutiao.cpython-36.pyc | 1.73 KB | 2017-06-12 |
__init__.cpython-36.pyc | 0.14 KB | 2017-06-12 |
__init__.py | 0.00 KB | 2017-06-12 |
common.cpython-36.pyc | 0.28 KB | 2017-06-12 |
items.cpython-36.pyc | 0.38 KB | 2017-06-12 |
pipelines.cpython-36.pyc | 0.80 KB | 2017-06-12 |
settings.cpython-36.pyc | 0.33 KB | 2017-06-12 |
__init__.cpython-36.pyc | 0.14 KB | 2017-06-12 |
发表评论 取消回复